alexa The COP9 signalosome is a repressor of replicative stress responses and polyploidization in the regenerating liver.


Journal of Carcinogenesis & Mutagenesis

Author(s): Panattoni M, Maiorino L, Lukacs A, Zentilin L, Mazza D,

Abstract Share this page

Abstract Aberrant DNA replication induced by deregulated or excessive proliferative stimuli evokes a "replicative stress response" leading to cell cycle restriction and/or apoptosis. This robust fail-safe mechanism is eventually bypassed by transformed cells, due to ill-defined epistatic interactions. The COP9 signalosome (CSN) is an evolutionarily conserved regulator of cullin ring ligases (CRLs), the largest family of ubiquitin ligases in metazoans. Conditional inactivation of the CSN in several tissues leads to activation of S- or G2-phase checkpoints resulting in irreversible cell cycle arrest and cell death. Herein we ablated COPS5, the CSNs catalytic subunit, in the liver, to investigate its role in cell cycle reentry by differentiated hepatocytes. Lack of COPS5 in regenerating livers causes substantial replicative stress, which triggers a CDKN2A-dependent genetic program leading to cell cycle arrest, polyploidy, and apoptosis. These outcomes are phenocopied by acute overexpression of c-Myc in COPS5 null hepatocytes of adult mice. CONCLUSION: We propose that combined control of proto-oncogene product levels and proteins involved in DNA replication origin licensing may explain the deleterious consequences of CSN inactivation in regenerating livers and provide insight into the pathogenic role of the frequently observed overexpression of the CSN in hepatocellular carcinoma. © 2014 by the American Association for the Study of Liver Diseases. This article was published in Hepatology and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version