alexa The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence.


Journal of Microbial & Biochemical Technology

Author(s): Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T,

Abstract Share this page

Abstract A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ Microbiol 68: 3183-3189). In this study, we conclusively linked the increased HHP and stress tolerance of strain AK01 to a single codon deletion in ctsR (class three stress gene repressor) in a region encoding a highly conserved glycine repeat. CtsR negatively regulates the expression of the clp genes, including clpP, clpE and the clpC operon (encompassing ctsR itself), which belong to the class III heat shock genes. Allelic replacement of the ctsR gene in the wt background with the mutant ctsR gene, designated ctsRDeltaGly, rendered mutants with phenotypes and protein expression profiles identical to those of strain AK01. The expression levels of CtsR, ClpC and ClpP proteins were significantly higher in ctsRDeltaGly mutants than in the wt strain, indicative of the CtsRDeltaGly protein being inactive. Further evidence that the CtsRDeltaGly protein lacks its repressor function came from the finding that the Clp proteins in the mutant were not further induced upon heat shock, and that HHP tolerance of a ctsR deletion strain was as high as that of a ctsRDeltaGly mutant. The high HHP tolerance possibly results from the increased expression of the clp genes in the absence of (active) CtsR repressor. Importantly, the strains expressing CtsRDeltaGly show significantly attenuated virulence compared with the wt strain; however, no indication of disregulation of PrfA in the mutant strains was found. Our data highlight an important regulatory role of the glycine-rich region of CtsR in stress resistance and virulence.
This article was published in Mol Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version