alexa The CTX-M beta-lactamase pandemic.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Cantn R, Coque TM

Abstract Share this page

Abstract In the past decade CTX-M enzymes have become the most prevalent extended-spectrum beta-lactamases, both in nosocomial and in community settings. The insertion sequences (ISs) ISEcp1 and ISCR1 (formerly common region 1 [CR1] or orf513) appear to enable the mobilization of chromosomal beta-lactamase Kluyvera species genes, which display high homology with blaCTX-Ms. These ISs are preferentially linked to specific genes: ISEcp1 to most blaCTX-Ms, and ISCR1 to blaCTX-M-2 or blaCTX-M-9. The blaCTX-M genes embedded in class 1 integrons bearing ISCR1 are associated with different Tn402-derivatives, and often with mercury Tn21-like transposons. The blaCTX-M genes linked to ISEcp1 are often located in multidrug resistance regions containing different transposons and ISs. These structures have been located in narrow and broad host-range plasmids belonging to the same incompatibility groups as those of early antibiotic resistance plasmids. These plasmids frequently carry aminoglycoside, tetracycline, sulfonamide or fluoroquinolone resistance genes [qnr and/or aac(6')-Ib-cr], which would have facilitated the dissemination of blaCTX-M genes because of co-selection processes. In Escherichia coli, they are frequently carried in well-adapted phylogenetic groups with particular virulence-factor genotypes. Also, dissemination has been associated with different clones (CTX-M-9 or CTX-M-14 producers) or epidemic clones associated with specific enzymes such as CTX-M-15. All these events might have contributed to the current pandemic CTX-M beta-lactamase scenario. This article was published in Curr Opin Microbiol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

  • Limin Chen
    An 18- Gene Signature Predicting Treatment Response to Interferon in Patients Chronically Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Sudha Srivastava
    Novel Inhibitor by Modifying Oseltamivir Based on Neuraminidase Structure for Treating Drug-Resistant H5N1 Virus Using Molecular Docking NMR and DSC Methods
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords