alexa The delayed pulmonary syndrome following acute high-dose irradiation: a rhesus macaque model.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Garofalo M, Bennett A, Farese AM, Harper J, Ward A,

Abstract Share this page

Abstract Several radiation dose- and time-dependent tissue sequelae develop following acute high-dose radiation exposure. One of the recognized delayed effects of such exposures is lung injury, characterized by respiratory failure as a result of pneumonitis that may subsequently develop into lung fibrosis. Since this pulmonary subsyndrome may be associated with high morbidity and mortality, comprehensive treatment following high-dose irradiation will ideally include treatments that mitigate both the acute hematologic and gastrointestinal subsyndromes as well as the delayed pulmonary syndrome. Currently, there are no drugs approved by the Food and Drug Administration to counteract the effects of acute radiation exposure. Moreover, there are no relevant large animal models of radiation-induced lung injury that permit efficacy testing of new generation medical countermeasures in combination with medical management protocols under the FDA animal rule criteria. Herein is described a nonhuman primate model of delayed lung injury resulting from whole thorax lung irradiation. Rhesus macaques were exposed to 6 MV photon radiation over a dose range of 9.0-12.0 Gy and medical management administered according to a standardized treatment protocol. The primary endpoint was all-cause mortality at 180 d. A comparative multiparameter analysis is provided, focusing on the lethal dose response relationship characterized by a lethal dose50/180 of 10.27 Gy [9.88, 10.66] and slope of 1.112 probits per linear dose. Latency, incidence, and severity of lung injury were evaluated through clinical and radiographic parameters including respiratory rate, saturation of peripheral oxygen, corticosteroid requirements, and serial computed tomography. Gross anatomical and histological analyses were performed to assess radiation-induced injury. The model defines the dose response relationship and time course of the delayed pulmonary sequelae and consequent morbidity and mortality. Therefore, it may provide an effective platform for the efficacy testing of candidate medical countermeasures against the delayed pulmonary syndrome. This article was published in Health Phys and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version