alexa The development and pathologic processes that influence maxillary sinus pneumatization.
Dentistry

Dentistry

JBR Journal of Interdisciplinary Medicine and Dental Science

Author(s): Lawson W, Patel ZM, Lin FY

Abstract Share this page

Abstract The maxillary sinus is universally described as a pyramidal-shaped cavity in the maxilla. Hypoplasia, which can occur unilaterally or bilaterally, is graded by the authors by the degree of failure of descent below the nasal floor in achieving its position adjacent to the posterior dentition in the adult. Unlike early studies using plain X-rays, which considered pneumatization into the zygomatic recess and dental alveolus as criteria, the authors have adopted the above-cited parameters based on computed tomography (CT) imaging, which reveals that even when smaller the sinus retains a pyramidal configuration, although truncated. Rarely, the sinus is excessively pneumatized in the nonpathologic state. Review of the literature failed to reveal a comprehensive study of the conditions that alter maxillary sinus volume and configuration. Based on a retrospective review of 6,000 high resolution CT scans of the paranasal sinuses, the types and relative incidences of these conditions have been determined, and a classification system proposed. The mixed-sex sample group (= 2,540) was comprised of nonpediatric (adolescent and adult) and was of a polyethnic composition. Results showed that enlargement of the sinus is uncommonly encountered, and is produced by air (pneumocele) and mucus (mucocele) entrapment, or by benign tumors which have arisen in the sinus or adjacent maxilla and have grown intracavitarily, with the sinus walls expanding and remodeling to accommodate them. Reduction in size and volume is more frequent. Heredo-familial syndromic conditions reduce sinus size by impaired facial growth centers, or obliteration by dense osteosclerosis. Irradiation for neoplastic disease in the pediatric population similarly, directly effect growth centers, or impairs pituitary function. Another iatrogenic cause, direct surgical intervention (Caldwell-Luc procedure) almost universally alters sinus volume and shape by osteoneogenesis. Midfacial fractures involving the sinus also produce distortion by sclerosis as well as by malpositioning of bone fragments. The principal systemic disorders, sickle cell anemia and osteopetrosis, which diffusely effect medullary bone, do so either through compensatory marrow proliferation or sclerotic new bone formation, thus serving to produce maxillary enlargement and sinus obliteration. The greatest source of maxillary sinus distortion and destruction are neoplasms. Malignant sinonasal and oral cavity tumors produce bony erosion of the sinus walls, whereas benign odontogenic cysts remain external to the sinuses and compress it as they enlarge. Most odontogenic tumors produce external compression and remodeling. Fibro-osseous disorders similarly produce size and shape distortions by external impingement. Although diverse developmental and pathological conditions influence maxillary sinus morphology, there is a limited range of biologic response. Copyright 2008 Wiley-Liss, Inc. This article was published in Anat Rec (Hoboken) and referenced in JBR Journal of Interdisciplinary Medicine and Dental Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords