alexa The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Chan DW, LeesMiller SP

Abstract Share this page

Abstract The DNA-dependent protein kinase (DNA-PK) requires for activity free ends or other discontinuities in the structure of double strand DNA. In vitro, DNA-PK phosphorylates several transcription factors and other DNA-binding proteins and is thought to function in DNA damage recognition or repair and/or transcription. Here we show that in vitro DNA-PK undergoes autophosphorylation of all three protein subunits (DNA-PKcs, Ku p70 and Ku p80) and that phosphorylation correlates with inactivation of the serine/threonine kinase activity of DNA-PK. Significantly, activity is restored by the addition of purified native DNA-PKcs but not Ku, suggesting that inactivation is due to autophosphorylation of DNA-PKcs. Our data also suggest that autophosphorylation results in dissociation of DNA-PKcs from the Ku-DNA complex. We suggest that autophosphorylation is an important mechanism for the regulation of DNA-PK activity.
This article was published in J Biol Chem and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords