alexa The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): Mooranian A, Negrulj R, Arfuso F, AlSalami H, Mooranian A, Negrulj R, Arfuso F, AlSalami H

Abstract Share this page

Abstract In recent studies, we designed multi-compartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in an animal model of type 2 diabetes (T2D). Probucol (PB) is a highly lipophilic, antihyperlipidemic drug with potential antidiabetic effects. PB has low bioavailability and high inter-individual variations in absorption, which limits its clinical applications. In a new study, the bile acid, taurocholic acid (TCA), exerted permeation enhancing effects in vivo. Accordingly, this study aimed to design and characterize TCA-based PB microcapsules and examine the effects of TCA on the microcapsules' morphology, stability, and release profiles. Microcapsules were prepared using the polymer sodium alginate (SA). Two types of microcapsules were produced, one without TCA (PB-SA, control) and one with TCA (PB-TCA-SA, test). Microcapsules were studied in terms of morphology, surface structure and composition, size, drug contents, cross-sectional imaging (using microtomography (Micro-CT) analysis), Zeta potential, thermal and chemical profiles, rheological parameters, swelling, mechanical strength, and release studies at various temperature and pH values. The production yield and the encapsulation efficiency were also studied together with in vitro efficacy testing of cell viability at various glucose concentrations and insulin and TNF-α production using clonal-mouse pancreatic β-cells. PB-TCA-SA microcapsules showed uniform structure and even distribution of TCA within the microcapsules. Drug contents, Zeta potential, size, rheological parameters, production yield, and the microencapsulation efficiency remained similar after TCA addition. In vitro testing showed PB-TCA-SA microcapsules improved β-cell survival under hyperglycemic states and reduced the pro-inflammatory cytokine TNF-α while increasing insulin secretions compared with PB-SA microcapsules. PB-TCA-SA microcapsules also showed good stability, better mechanical (p < 0.01) and swelling (p < 0.01) characteristics, and optimized controlled release at pH 7.8 (p < 0.01) compared with control, suggesting desirable targeted release properties and potential applications in the oral delivery of PB in T2D. This article was published in Drug Deliv Transl Res and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 17th Euro Biotechnology Congress
    September 25-27, 2017 Berlin, Germany
  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords