alexa The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Lynch T, Price A

Abstract Share this page

Abstract Cytochrome P450 enzymes are essential for the metabolism of many medications. Although this class has more than 50 enzymes, six of them metabolize 90 percent of drugs, with the two most significant enzymes being CYP3A4 and CYP2D6. Genetic variability (polymorphism) in these enzymes may influence a patient's response to commonly prescribed drug classes, including beta blockers and antidepressants. Cytochrome P450 enzymes can be inhibited or induced by drugs, resulting in clinically significant drug-drug interactions that can cause unanticipated adverse reactions or therapeutic failures. Interactions with warfarin, antidepressants, antiepileptic drugs, and statins often involve the cytochrome P450 enzymes. Knowledge of the most important drugs metabolized by cytochrome P450 enzymes, as well as the most potent inhibiting and inducing drugs, can help minimize the possibility of adverse drug reactions and interactions. Although genotype tests can determine if a patient has a specific enzyme polymorphism, it has not been determined if routine use of these tests will improve outcomes.
This article was published in Am Fam Physician and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords