alexa The effect of dietary ginger (Zingiber officinals Rosc) on renal ischemia reperfusion injury in rat kidneys.
Nutrition

Nutrition

Journal of Nutrition & Food Sciences

Author(s): Uz E, Karatas OF, Mete E, Bayrak R, Bayrak O,

Abstract Share this page

Abstract Oxidative stress has been considered as one of the possible mechanisms of ischemia/ reperfusion (I/R) injury in the kidney. The aim of this study was to analyze the possible protective effect of dietary ginger (Zingiber officinals Rosc), a free radical scavenger, on renal I/R injury in rats. The protective effect of ginger against the damage inflicted by reactive oxygen species (ROS) during renal I/R was investigated in Wistar albino rats using histopathological and biochemical parameters. Thirty rats were randomly divided into five experimental groups (i.e., control, sham-operated, ginger, I/R, and I/R + ginger groups, n = 6 each). The ginger and I/R + ginger groups were fed on the test diet containing 5\% ginger. The rats were subjected to bilateral renal ischemia followed by reperfusion in I/R and I/R + ginger groups. At the end of the reperfusion period, rats were sacrificed, and kidney function tests, serum and tissue oxidants and antioxidants, and renal morphology were evaluated. Serum urea, creatinine, and cystatin C (CYC) levels were significantly elevated in the ischemia group, but these levels remained unchanged in the ginger + I/R group compared to the I/R group. Reduction of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) enzyme activity was significantly improved by the treatment with ginger compared to I/R group. Administration of ginger resulted in significant reduction levels of tissue malondialdehyde (MDA), NO, protein carbonyl contents (PCC) in the ginger + I/R group compared with the I/R group. Ginger supplementation in the diet before I/R injury resulted in higher total antioxidant capacity (TAC) and lower total oxidant status (TOS) levels than I/R group. The ginger supplemented diet prior to I/R process demonstrated marked reduction of the histological features of renal injury. The findings imply that ROS play a causal role in I/R-induced renal injury, and ginger exerts renoprotective effects probably by the radical scavenging and antioxidant activities. This article was published in Ren Fail and referenced in Journal of Nutrition & Food Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Food Processing & Technology
    October 02-04, 2017 London, UK
  • Public Health, Epidemiology & Nutrition
    November 13-14, 2017 Osaka, Japan
  • Food Processing & Technology
    December 05-07, 2016 San Antonio, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords