alexa The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Bang LM, Buntting C, Molan P

Abstract Share this page

Abstract OBJECTIVE: Honey is an effective antiseptic wound dressing, mainly the result of the antibacterial activity of hydrogen peroxide that is produced in honey by the enzyme glucose oxidase. Because the rate of production of hydrogen peroxide is known to vary disproportionately when honey is diluted, and dilution of honey dressings will vary according to the amount of wound exudate, it is important to know more about the production of hydrogen peroxide at different concentrations of honey. DESIGN: The rates of hydrogen peroxide production by honey with respect to honey dilution were measured in eight different samples of honey from six different floral sources. SETTINGS: Honey Research Unit, Waikato University, Hamilton, New Zealand. MAIN RESULTS: The maximum levels of accumulated hydrogen peroxide occurred in honey solutions diluted to concentrations between 30\% and 50\% (v/v) with at least 50\% of the maximum levels occurring at 15-67\% (v/v). This is equivalent to a 10 cm x 10 cm dressing containing 20 mL of honey becoming diluted with 10 to 113 mL of wound exudate. Maximum levels of hydrogen peroxide reached in the diluted honeys were in the range of 1-2 mmol/L. CONCLUSION: Significant antibacterial activity can be maintained easily when using honey as a wound dressing, even on a heavily exuding wound. Concentrations of hydrogen peroxide generated are very low in comparison to those typically applied to a wound, thus, cytotoxic damage by hydrogen peroxide is very low. This article was published in J Altern Complement Med and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords