alexa The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk.


Journal of Microbial & Biochemical Technology

Author(s): McClements JM, Patterson MF, Linton M

Abstract Share this page

Abstract The effect of high hydrostatic pressure on the survival of the psychrotrophic organisms Listeria monocytogenes, Bacillus cereus, and Pseudomonas fluorescens was investigated in ultrahigh-temperature milk. Variation in pressure resistance between two strains of each organism were studied. The effect of growth stage (exponential and stationary phase), growth temperature (8 and 30 degrees C) on pressure resistance, and sublethal pressure injury were investigated. Exponential-phase cells were significantly less resistant to pressure than stationary-phase cells for all of the three species studied (P < 0.05). Growth temperature was found to have a significant effect at the two growth stages studied. Exponential cells grown at 8 degrees C were more resistant than those grown at 30 degrees C, but for stationary-phase cells the reverse was true. B. cereus stationary-phase cells grown at 30 degrees C were the most pressure resistant studied. L. monocytogenes showed the most sublethal damage compared to B. cereus and P. fluorescens. B. cereus spores were more resistant to pressure than vegetative cells. Pressure treatment at 400 MPa for 25 min at 30 degrees C gave a 0.45-log inactivation. Pressure treatment at 8 degrees C induced significantly less spore germination than at 30 degrees C. This study indicates the importance of the history of a bacterial culture prior to pressure treatment and that bacterial spores require more severe pressure treatments, probably in combination with other preservation techniques, to ensure inactivation.
This article was published in J Food Prot and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version