alexa The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy.
Biochemistry

Biochemistry

Journal of Membrane Science & Technology

Author(s): Miklavcic D, Pucihar G, Pavlovec M, Ribaric S, Mali M,

Abstract Share this page

Abstract Muscle contractions present the main source of unpleasant sensations for patients undergoing electrochemotherapy. The contractions are a consequence of high voltage pulse delivery. Relatively low repetition frequency of these pulses (1 Hz) results in separate muscle contractions associated with each single pulse that is delivered. It would be possible to reduce the number of unpleasant sensations by increasing the frequency of electric pulses above the frequency of tetanic contraction, provided that the antitumor efficiency of electrochemotherapy remains the same. These assumptions were investigated in the present paper by measuring the muscle torque at different pulse repetition frequencies and at two different pulse amplitudes in rats and studying the antitumor efficiency of electrochemotherapy at different pulse repetition frequencies on tumors in mice. Measurements of muscle torque confirmed that pulse frequencies above the frequency of tetanic contraction (>100 Hz) reduce the number of individual contractions to a single muscle contraction. Regardless of the pulse amplitude, with increasing pulse frequency muscle torque increases up to the frequency of 100 or 200 Hz and then decreases to a value similar to that after application of a 1 Hz pulse train. Electrochemotherapy in vivo with higher repetition frequencies inhibits tumor growth and is efficient at all pulse frequencies examined (1 Hz-5 kHz). These results suggest that there is a considerable potential for clinical use of high frequency pulses in electrochemotherapy. This article was published in Bioelectrochemistry and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords