alexa The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic.
Dentistry

Dentistry

Dentistry

Author(s): Chaiyabutr Y, McGowan S, Phillips KM, Kois JC, Giordano RA

Abstract Share this page

Abstract STATEMENT OF PROBLEM: Clinicians are frequently faced with a challenge in selecting materials for adjacent restorations, particularly when one tooth requires a zirconia-based restoration and the next requires a veneer. While it may be desirable to use the same veneering ceramic on adjacent teeth, little information is available about the use of veneering ceramics over a zirconia-based material. PURPOSE: The purpose of this study was threefold: (1) to study the influence of hydrofluoric acid-etched treatment on the surface topography of the zirconia veneering ceramic, (2) to test the bond strength of zirconia veneering ceramic to enamel, and (3) to evaluate the flexural strength and the elemental composition of ceramic veneers. MATERIAL AND METHODS: Three zirconia veneering ceramics (Cerabien CZR (CZ), Lava Ceram (L), and Zirox (Z)) and 4 conventional veneering ceramics (Creation (C), IPS d.Sign (D), Noritake EX-3 (E), and Reflex (R)) were evaluated. Twenty ceramic bars of each material were fabricated and surface treated with hydrofluoric acid according to the manufacturer's recommendations. Ten specimens from each group of materials were examined with a profilometer, and a sample of this group was selected for quantitative evaluation using a scanning electron microscope (SEM). Another 10 acid-etched specimens from each group of materials were treated with silane prior to cementing with resin cement (Variolink II) on enamel surfaces. These luted specimens were loaded to failure in a universal testing machine in the shear mode with a crosshead speed of 0.05 mm/min. The data were analyzed with a 1-way ANOVA, followed by Tukey's HSD test (alpha=.05). An additional 10 ceramic bars from each material group were fabricated to evaluate flexural strength and elemental composition. The flexural strength (MPa) of each specimen was determined by using a 4-point-1/4-point flexure test. A Weibull statistic tested the reliability of the strength data; pairwise differences among the 7 groups were evaluated at confidence intervals of 95\%. The chemical composition of each bar was determined by energy dispersive spectroscopy (EDS). RESULTS: There was a significant difference in the surface roughness in all testing groups. Conventional veneering ceramics (groups C and R) had a mean surface roughness higher than the groups of zirconia veneering ceramics (P<.001). Group D showed no difference in surface roughness compared with the groups of zirconia veneering ceramics. The SEM micrographs revealed differences in the acid-etched surfaces of ceramics. Zirconia veneering ceramics were smooth, with some groove formations, while conventional veneering ceramics had an amorphous, spongy-like structure with numerous microporosites. The mean bond strength (SD) of zirconia veneering ceramics to enamel revealed a significant difference. Group R (25.16 (3.40) MPa) followed by group C (22.51 (2.82) MPa) had significantly higher mean bond strength than the groups of zirconia veneering ceramics (P<.001, P=.009 respectively). Groups D (16.54 (2.73) MPa) and E (17.92 (3.39) MPa) showed no differences. Only group L (9.45 (1.62) MPa) exhibited significantly lower mean bond strength when compared with conventional veneering ceramics (P<.001). For flexural strength, only 1 group, group CZ, had a significantly lower flexural strength than all other groups (P<.001). CONCLUSIONS: Effective ceramic interface management, such as acid etching and enamel bonding, is essential for successful ceramic laminate veneer restorations. Not all zirconia veneering ceramics display the same quality of surface roughness after hydrofluoric acid etching and the same bond strength to enamel when used as laminate veneer materials. This article was published in J Prosthet Dent and referenced in Dentistry

Relevant Expert PPTs

Recommended Conferences

  • 39th Asia-Pacific Dental and Oral Care Congress
    October 26-28, 2017 Osaka, Japan
  • American World Dentistry
    November 13-14, 2017 San Antonio, U
  • 39th South American Dental Congress
    Dec 4-6,2017 Sao Paulo,Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords