alexa The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Wu DY, Ugozzoli L, Pal BK, Qian J, Wallace RB

Abstract Share this page

Abstract The polymerase chain reaction (PCR) is most effectively performed using a thermostable DNA polymerase such as that isolated from Thermus aquaticus. Since temperature and oligonucleotide length are known to control the specificity of oligonucleotide hybridization, we have investigated the effect of oligonucleotide length, base composition, and the annealing temperature on the specificity and efficiency of amplification by the PCR. Generally, the specificity of PCR is controlled by the length of the oligonucleotide and/or the temperature of annealing of the primer to the template. An empirical relationship between oligonucleotide length and ability to support amplification was determined. This relationship allows for the design of specific oligonucleotide primers. A model is proposed which helps explain the observed dependence of PCR on annealing temperature and length of the primer. This article was published in DNA Cell Biol and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]online.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords