alexa The effects of lipid-lowering therapy on low-density lipoprotein auto-antibodies: relationship with low-density lipoprotein oxidation and plasma total antioxidant status.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Orem C, Orem A, Uydu HA, Celik S, Erdl C,

Abstract Share this page

Abstract BACKGROUND: Oxidized low-density lipoprotein (Ox-LDL) is believed to play an important role in the progression of atherosclerosis. Oxidative modification of low-density lipoprotein (LDL) is a prerequisite for rapid accumulation of LDL in macrophages and for the formation of foam cells. Because of high antioxidant levels in plasma, LDL oxidation is suggested to occur mainly in the subendothelial space of the arterial wall, where there is the concomitant presence of large amounts of reactive oxygen species generated by endothelial cells and activated leukocytes. After Ox-LDL formation, antibodies against this form of LDL may occur. Auto-antibodies against Ox-LDL (AuAb-Ox-LDL) show directly in in-vivo LDL oxidation. Many studies have indicated that the amount of antibodies in serum is positively correlated to the rate of progression of atherosclerotic plaques. DESIGN AND METHODS: In this study the effect of lipid-lowering therapy on the levels of AuAb-Ox-LDL in patients with dyslipidemia was determined using atorvastatin (10 mg/day), and the relationship between the antibodies and plasma total antioxidant status (TAS) and LDL oxidation capacity was also investigated. Serum levels of AuAb-Ox-LDL, lipids, lipoproteins, TAS and susceptibility of LDL to oxidation were determined using lag time in 44 patients with dyslipidemia (29 with hypercholesterolemia and 15 with mixed-type hyperlipidemia). RESULTS: After lipid-lowering therapy, serum levels of AuAb-Ox-LDL were found to be significantly decreased, by 18.7\%, while lag time and plasma TAS were increased (31.3\% and 7.6\% respectively) in patients with dyslipidemia. The percentage change in lag time was found to be negatively correlated to the percentage change in AuAb-Ox-LDL (r = -0.31, P < 0.05). The percentage change in lag time also showed a positive correlation with the percentage change in TAS (r = 0.58, P < 0.01). AuAb-Ox-LDL levels decreased by 21.7\% in patients with hypercholesterolemia and by 12.6\% in patients with mixed-type hyperlipidemia. Also AuAb-Ox-LDL levels in patients with hypercholesterolemia were higher than in those with mixed-type hyperlipidemia (367 +/- 294 compared with 300 +/- 176 mU/l). CONCLUSION: It was concluded that lipid-lowering therapy may contribute to the reduction in levels of AuAb-Ox-LDL and the increase in the antioxidant capacity of plasma LDL and TAS. It was also suggested that the measurement of antibodies against Ox-LDL during lipid-lowering therapy may be used as an important marker for representing in-vivo LDL oxidation and atherosclerotic processes.
This article was published in Coron Artery Dis and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords