alexa The effects of low- and high-frequency repetitive TMS on the input output properties of the human corticospinal pathway.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Houdayer E, Degardin A, Cassim F, Bocquillon P, Derambure P,

Abstract Share this page

Abstract The objective of this study was to characterize the effects of various parameters (notably the frequency and intensity) of repetitive transcranial magnetic stimulation (rTMS) applied over the primary motor (M1) and premotor (PMC) cortices on the excitability of the first dorsalis interosseus (FDI) corticospinal pathway. To this end, we applied a comprehensive input-output analysis after fitting the experimental results to a sigmoidal function. Twenty-six healthy subjects participated in the experiments. Repetitive TMS was applied either over M1 or PMC at 1 Hz (LF) for 30 min (1,800 pulses) or at 20 Hz (HF) for 20 min (1,600 pulses). In the HF condition, the TMS intensity was set to 90\% (HF(90)) of the FDI's resting motor threshold (RMT). In the LF condition, the TMS intensity was set to either 90\% (LF(90)) or 115\% (LF(115)) of the RMT. The FDI input/output (I/O) curve was measured on both sides of the body before rTMS (the Pre session) and then during two Post sessions. For each subject, the I/O curves (i.e., the integral of the FDI motor-evoked potential (MEP) vs. stimulus intensity) were fitted using a Boltzmann sigmoidal function. The graph's maximum slope, S (50) and plateau value were then compared between Pre and Post sessions. LF(115) over M1 increased the slope of the FDI I/O curve but did not change the S (50) and plateau value. This also suggested an increase in the RMT. HF(90) led to a more complex effect, with an increase in the slope and a decrease in the S (50) and plateau value. We did not see a cross effect on the homologous FDI corticospinal pathway, and only PMC LF(90) had an effect on ipsilateral corticospinal excitability. Our results suggest that rTMS may exert a more complex influence on cortical network excitability than is usually reported (i.e. simple inhibitory or facilitatory effects). Analysis of the fitted stimulus response curve indicates a dichotomous influence of both low- and high-frequency rTMS on M1 cortical excitability; this may reflect intermingled effects on excitatory and inhibitory cortical networks. This article was published in Exp Brain Res and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords