alexa The effects of water velocity on the Ceratomyxa shasta infectious cycle.
Agri and Aquaculture

Agri and Aquaculture

Fisheries and Aquaculture Journal

Author(s): Bjork SJ, Bartholomew JL

Abstract Share this page

Abstract Ceratomyxa shasta is a myxozoan parasite identified as a contributor to salmon mortality in the Klamath River, USA. The parasite has a complex life cycle involving a freshwater polychaete, Manayunkia speciosa and a salmonid. As part of ongoing research on how environmental parameters influence parasite establishment and replication, we designed a laboratory experiment to examine the effect of water flow (velocity) on completion of the C. shasta infectious cycle. The experiment tested the effect of two water velocities, 0.05 and 0.01 m s(-1), on survival and infection of M. speciosa as well as transmission to susceptible rainbow trout and comparatively resistant Klamath River Chinook salmon. The faster water velocity facilitated the greatest polychaete densities, but the lowest polychaete infection prevalence. Rainbow trout became infected in all treatments, but at the slower velocity had a shorter mean day to death, indicating a higher infectious dose. Infection was not detected in Chinook salmon even at a dose estimated to be as high as 80,000 actinospores per fish. The higher water velocity resulted in lower C. shasta infection prevalence in M. speciosa and decreased infection severity in fish. Another outcome of our experiment is the description of a system for maintaining and infecting M. speciosa in the laboratory.
This article was published in J Fish Dis and referenced in Fisheries and Aquaculture Journal

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords