alexa The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN,

Abstract Share this page

Abstract Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves translational and transcriptional changes in gene expression aimed at expanding the ER processing capacity and alleviating cellular injury. Three ER stress sensors (PERK, ATF6, and IRE1) implement the UPR. PERK phosphorylation of the α subunit of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins. Phosphorylation of eIF2α (eIF2α~P) also induces preferential translation of ATF4, a transcription activator of the integrated stress response. In this study we show that the PERK/eIF2α~P/ATF4 pathway is required not only for translational control, but also for activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated and help explain the diverse biological defects associated with loss of PERK.
This article was published in Mol Biol Cell and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords