alexa The electrical behaviour of rat connexin46 gap junction channels expressed in transfected HeLa cells.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Sakai R, Elfgang C, Vogel R, Willecke K, Weingart R

Abstract Share this page

Abstract Pairs of human HeLa cells expressing rat connexin46 were used to study the electrical properties of gap junction channels with the dual voltage-clamp method. The steady-state conductance ( g(j,ss)) had a bell-shaped dependence on transjunctional voltage ( V(j)). The parameters of the Boltzmann fit were: V(j,0)=42 mV, g(j,min)=0.12, z=2.5 (pipette solution: K(+) aspartate(-); 27 degrees C). The Boltzmann parameters were sensitive to the ionic composition of the pipette solution (KCl, K(+) aspartate(-), TEA(+) Cl(-), TEA(+) aspartate(-)). The V(j)-dependent inactivation of the junctional current I(j) was approximated by single exponentials (exceptions: two exponentials with KCl at V(j)>or=75 mV and K(+) aspartate(-) at V(j)=125 mV). The time constant of inactivation (tau(i)) decreased with increasing V(j) and was sensitive to the pipette solution. The larger the ions, the slower the inactivation. Recovery from inactivation followed a single exponential. The time constant of recovery (tau(r)) increased with increasing V(j). Single-channel currents showed a main state, several substates and a residual state. The corresponding conductances gamma(j,main) and gamma(j,residual) decreased slightly with increasing V(j); extrapolation to V(j)=0 mV yielded values of 152 and 28 pS, respectively (K(+) aspartate(-); 37 degrees C). The values of gamma(j,main) and gamma(j,residual) were dependent on pipette solution. The ratio gamma(j,main)/gamma(j,residual) increased with increasing ionic size, suggesting that the residual state impairs ion permeation more severely than the main state. The gamma(j,main) data suggest that the ionic selectivity of Cx46 channels may be controlled primarily by ionic size. Compared with hemichannel results, docking of connexons may modify the channel structure and thereby affect the ionic selectivity of gap junction channels. The open channel probability at steady state ( P(o)) decreased with increasing V(j). The parameters of the Boltzmann fit were: V(j,0)=41 mV, z=2.2 (K(+) aspartate(-); 27 degrees C). This article was published in Pflugers Arch and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords