alexa The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases.
Environmental Sciences

Environmental Sciences

Journal of Biodiversity, Bioprospecting and Development

Author(s): Johnson LN, Lowe ED, Noble ME, Owen DJ

Abstract Share this page

Abstract Protein kinases catalyse phospho transfer reactions from ATP to serine, threonine or tyrosine residues in target substrates and provide key mechanisms for control of cellular signalling processes. The crystal structures of 12 protein kinases are now known. These include structures of kinases in the active state in ternary complexes with ATP (or analogues) and inhibitor or peptide substrates (e.g. cyclic AMP dependent protein kinase, phosphorylase kinase and insulin receptor tyrosine kinase); kinases in both active and inactive states (e.g. CDK2/cyclin A, insulin receptor tyrosine kinase and MAPK); kinases in the active state (e.g. casein kinase 1, Lck); and kinases in inactive states (e.g. twitchin kinase, calcium calmodulin kinase 1, FGF receptor kinase, c-Src and Hck). This paper summarises the detailed information obtained with active phosphorylase kinase ternary complex and reviews the results with reference to other kinase structures for insights into mechanisms for substrate recognition and control.
This article was published in FEBS Lett and referenced in Journal of Biodiversity, Bioprospecting and Development

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords