alexa The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier.
Environmental Sciences

Environmental Sciences

Journal of Ecosystem & Ecography

Author(s): Schmickl R, Jrgensen MH, Brysting AK, Koch MA

Abstract Share this page

Abstract BACKGROUND: The genomes of higher plants are, on the majority, polyploid, and hybridisation is more frequent in plants than in animals. Both polyploidisation and hybridisation contribute to increased variability within species, and may transfer adaptations between species in a changing environment. Studying these aspects of evolution within a diversified species complex could help to clarify overall spatial and temporal patterns of plant speciation. The Arabidopsis lyrata complex, which is closely related to the model plant Arabidopsis thaliana, is a perennial, outcrossing, herbaceous species complex with a circumpolar distribution in the Northern Hemisphere as well as a disjunct Central European distribution in relictual habitats. This species complex comprises three species and four subspecies, mainly diploids but also several tetraploids, including one natural hybrid. The complex is ecologically, but not fully geographically, separated from members of the closely related species complex of Arabidopsis halleri, and the evolutionary histories of both species compexes have largely been influenced by Pleistocene climate oscillations. RESULTS: Using DNA sequence data from the nuclear encoded cytosolic phosphoglucoisomerase and Internal Transcribed Spacers 1 and 2 of the ribosomal DNA, as well as the trnL/F region from the chloroplast genome, we unravelled the phylogeography of the various taxonomic units of the A. lyrata complex. We demonstrate the existence of two major gene pools in Central Europe and Northern America. These two major gene pools are constructed from different taxonomic units. We also confirmed that A. kamchatica is the allotetraploid hybrid between A. lyrata and A. halleri, occupying the amphi-Beringian area in Eastern Asia and Northern America. This species closes the large distribution gap of the various other A. lyrata segregates. Furthermore, we revealed a threefold independent allopolyploid origin of this hybrid species in Japan, China, and Kamchatka. CONCLUSIONS: Unglaciated parts of the Eastern Austrian Alps and arctic Eurasia, including Beringia, served as major glacial refugia of the Eurasian A. lyrata lineage, whereas A. halleri and its various subspecies probably survived in refuges in Central Europe and Eastern Asia with a large distribution gap in between. The North American A. lyrata lineage probably survived the glaciation in the southeast of North America. The dramatic climatic changes during glaciation and deglaciation cycles promoted not only secondary contact and formation of the allopolyploid hybrid A. kamchatica, but also provided the environment that allowed this species to fill a large geographic gap separating the two genetically different A. lyrata lineages from Eurasia and North America. With our example focusing on the evolutionary history of the A. lyrata species complex, we add substantial information to a broad evolutionary framework for future investigations within this emerging model system in molecular and evolutionary biology.
This article was published in BMC Evol Biol and referenced in Journal of Ecosystem & Ecography

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords