alexa The evolving story of the RAAS in hypertension, diabetes and CV disease: moving from macrovascular to microvascular targets.
Reproductive Medicine

Reproductive Medicine

Clinics in Mother and Child Health

Author(s): Steckelings UM, Rompe F, Kaschina E, Unger T

Abstract Share this page

Abstract The phylogenetically old renin-angiotensin-system (RAS) was originally described as a circulating hormonal system and a main cardiovascular regulator. However, there also exist 'local RASs' which are situated in cardiovascular as well as non-cardiovascular tissues where they are involved in physiological and patho-physiological processes such as inflammation, fibrosis, proliferation or apoptosis. Local RASs are activated in diabetes, preferentially in organs affected by hyperglycaemic injury such as the kidney or the retina. Increased renal or retinal Ang II levels may contribute to diabetic tissue injury in two ways: (i) by stimulating the angiotensin AT1-receptor and downstream pathological chains of events and (ii) by bidirectional interaction with the 'classical' hyperglycaemia-induced pathobiochemical pathways (oxidative stress, generation of advanced glycation end products, increased polyol pathway flux, activation of protein kinase C, increased hexosamine pathway flux). The involvement of the RAS in the pathomechanisms underlying diabetic end organ damage suggests pharmacological RAS inhibition as a therapeutic approach in these disorders. This assumption has been supported by numerous animal studies. Clinically, RAS inhibition is currently the first line, guideline-approved treatment in diabetic nephropathy. The recently published DIRECT, RASS and AdRem studies provided evidence that RAS inhibition may also be beneficial in diabetic retinopathy; however, evidence for RAS-inhibition in retinopathy is still much weaker than for nephropathy. The present article reviews the emerging knowledge about cardiovascular and non-cardiovascular effects of the RAS with an emphasis on the mechanisms of RAS involvement and pharmacological RAS inhibition in diabetic end organ damage. This article was published in Fundam Clin Pharmacol and referenced in Clinics in Mother and Child Health

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

mater[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords