alexa The Fe(III)Zn(II) form of recombinant human purple acid phosphatase is not activated by proteolysis.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Funhoff EG, Bollen M, Averill BA

Abstract Share this page

Abstract The kinetics and spectroscopic properties of the single polypeptide and proteolytically cleaved form of recombinant Fe(3+)Fe(2+) human purple acid phosphatase (recHPAP) exhibit significant differences, primarily due to a difference in pK(es,1) (the value of an acid dissociation constant of the ES complex). These differences are due to the presence or absence, respectively, of an interaction between an aspartate residue in an exposed loop of the protein and one or more active site residues. To further explore the origin of these differences, the ferrous ion of recHPAP has been replaced by zinc. Analysis of the reconstituted Fe(3+)Zn(2+)recHPAP reveals an unexpected catalytic activity versus pH profile, in that the optimal pH is 6.3, similar to that of the proteolytically cleaved form (6.5). Moreover, replacement of the ferrous ion by zinc increases the turnover number more than 10-fold; the pK(es) values are also shifted as expected for the change in the divalent metal ion. Although the EPR spectra of both single polypeptide and proteolytically cleaved Fe(3+)Zn(2+)-recHPAP are independent of pH over the range 4.5-6.2, the visible spectrum of Fe(3+)Zn(2+)-recHPAP is pH dependent. These results suggest that the properties and environment of the divalent metal are important in determining the catalytic properties of mammalian PAPs, and in particular that a solvent molecule coordinated to the divalent metal ion may play a critical role in the catalytic cycle of these enzymes. This article was published in J Inorg Biochem and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords