alexa The foundation of two distinct cell lineages within the mouse morula.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Current Synthetic and Systems Biology

Author(s): Johnson MH, Ziomek CA

Abstract Share this page

Abstract The division of single cells, isolated from an 8-cell mouse embryo, to give 2 x 1/16 cells has been studied by sampling cells for analysis at defined stages during and after the division. Cells were analyzed for evidence of polarity in their surface organization as assessed by fluorescent ligand binding and distribution of microvilli. Individual 1/8 cells are polarized. At division, most (82\%) divide such that both the pole of ligand binding and the pole of microvilli are distributed to only one of the two daughter cells. A couplet is thereby formed with a large polar cell and a small apolar cell. Some 1/8 cells divide through the pole, generating a couplet of two polar cells, the poles being contiguous at the midbody. Elements of the surface polarity observed in the 1/8 cells can be found at all stages throughout division. Analysis of couplets of cells derived from newly formed 16-cell morulae also reveals that most consist of a polar:apolar pair and some consist of a polar:polar couplet in which the poles are contiguous at the midbody. The results indicate that two distinct cell populations are generated at division. These cells are known to occupy different positions within the morula, the polar cells being peripheral and the apolar cells being central. Since peripheral and central cells give rise to trophectoderm and inner cell mass in the blastocyst, we therefore suggest that the foundation of the trophectoderm and inner cell mass lineages may occur by a process of differential inheritance. This conclusion supports the recently proposed polarization hypothesis, which is discussed.
This article was published in Cell and referenced in Current Synthetic and Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords