alexa The function of zinc metallothionein: a link between cellular zinc and redox state.
Neurology

Neurology

Journal of Neuroinfectious Diseases

Author(s): Maret W, Maret W

Abstract Share this page

Abstract A chemical and biochemical mechanism of action of the metallothionein (MT)/thionein (T) couple has been proposed. The mechanism emphasizes the importance of zinc/sulfur cluster bonding in MT and the significance of the two cluster networks as redox units that confer mobility on otherwise tightly bound and redox-inert zinc in MT. In this article, it is further explored how this redox mechanism controls the metabolically active cellular zinc pool. The low redox potential of the sulfur donor atoms in the clusters readily allows oxidation by mild cellular oxidants with concomitant release of zinc. Such a release by oxidants and the preservation of zinc binding by antioxidants place MT under the control of the cellular redox state and, consequently, energy metabolism. The binding of effectors, e.g., ATP, elicits conformational changes and alters zinc binding in MT. The glutathione/glutathione disulfide redox couple as well as selenium compounds effect zinc delivery from MT to the apoforms of zinc enzymes. This novel action of selenium on zinc/sulfur coordination sites has significant implications for the interaction between these essential elements. Tight binding and kinetic lability, modulation of MT by cellular ligands and the redox state, control of MT gene expression by zinc and many other inducers all support a critical function of the MT/T system in cellular homeostasis and distribution of zinc.
This article was published in J Nutr and referenced in Journal of Neuroinfectious Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version