alexa The functioning and interrelationships of blood capillaries and lymphatics.
Haematology

Haematology

Journal of Blood & Lymph

Author(s): CasleySmith JR

Abstract Share this page

Abstract The structure and function of blood capillaries, as related to permeability, depends on tight, close and (in injured vessels) open junctional regions, small vesicles, vacuoles (in injured vessels) and fenestrae. The basement membrane presents a hindrance to the larger macromolecules, at high flow rates, but not to small molecules. The connective tissue channels are probably the paths by which macromolecules, and most of the small ones, pass from the arterial-limbs to the venous ones, and to the lymphatics. In some regions these channels are grouped in special systems: the prelymphatics. The initial lymphatics take up material via open junctions, which close during tissue-compression. The collecting lymphatics retain the lymph because they do not have open junctions. In the close junctional regions the motive force for water flow is the result of Starling's forces; diffusion is very important for other small molecules. The small vesicles transport macromolecules slowly by Brownian motion, as may the vacuoles, but possibly these latter are moved actively. There is much evidence that colloids can develop high effective osmotic pressures even across pores much larger than their molecules, and that proteins can be dragged up a concentration gradient by the resultant fluid flow. On the basis of this, hypotheses have been developed about the functioning of venous-limb fenestrae and the initial lymphatics, for which there is much theoretical, in vitro, and in vivo evidence. Thus, in fenestrated regions there is held to be a large local circulation through the tissues, of which a quantitatively small, but qualitatively vital, part goes to the lymphatics. Material is considered usually to enter these latter because of the relative concentration of the lymph. It is becoming increasingly evident that in the study of the microvasculature, as with other systems, there is much to be gained by quantifying fine structural observations and by combining and contrasting this data, via physical laws, with that obtained by other methods where the characteristics of whole organs and regions are studied. Thus one can obtain interrelated information, which is not possible by either method alone, and which gives us a vital, comprehensive, perspective of the ways in which whole systems function, and how different systems interact. In this paper I shall show how this approach has yielded much that is new about the functioning of different kinds of blood capillaries, of the tissue channels, of the whole lymphatic system, and of the ways they affect each other.
This article was published in Experientia and referenced in Journal of Blood & Lymph

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords