alexa The global atmospheric environment for the next generation.
Geology & Earth Science

Geology & Earth Science

Journal of Remote Sensing & GIS

Author(s): Dentener F, Stevenson D, Ellingsen K, Van Noije T, Schultz M,

Abstract Share this page

Abstract Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 +/- 1.2 ppb (CLE) and 4.3 +/- 2.2 ppb (A2), using the ensemble mean model results and associated +/-1 sigma standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 +/- 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 +/- 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 +/- 15 and 155 +/- 37 mW m(-2) for CLE and A2, respectively, and decreases by -45 +/- 15 mW m(-2) for MFR. We compute that at present 10.1\% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m(-2) yr(-1). These percentages increase by 2030 to 15.8\% (CLE), 10.5\% (MFR), and 25\% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.
This article was published in Environ Sci Technol and referenced in Journal of Remote Sensing & GIS

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords