alexa The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions.


Journal of Biometrics & Biostatistics

Author(s): Molenaar D, Dolan CV, de Boeck P

Abstract Share this page

Abstract The Graded Response Model (GRM; Samejima, Estimation of ability using a response pattern of graded scores, Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, θ, to underlie the ordinal item scores (Takane & de Leeuw in Psychometrika, 52:393-408, 1987). Traditionally, a normal distribution is specified for Z implying homoscedastic error variances and a normally distributed θ. In this paper, we present the Heteroscedastic GRM with Skewed Latent Trait, which extends the traditional GRM by incorporation of heteroscedastic error variances and a skew-normal latent trait. An appealing property of the extended GRM is that it includes the traditional GRM as a special case. This enables specific tests on the normality assumption of Z. We show how violations of normality in Z can lead to asymmetrical category response functions. The ability to test this normality assumption is beneficial from both a statistical and substantive perspective. In a simulation study, we show the viability of the model and investigate the specificity of the effects. We apply the model to a dataset on affect and a dataset on alexithymia. This article was published in Psychometrika and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version