alexa The identification of a caffeine-induced Ca2+ influx pathway in rat primary sensory neurons.
Social & Political Sciences

Social & Political Sciences

Journal of Civil & Legal Sciences

Author(s): Daher JP, Gover TD, Moreira TH, Lopes VG, Weinreich D

Abstract Share this page

Abstract Caffeine-induced Ca2+ transients (CICTs) in rabbit nodose ganglion neurons (NGNs) are produced by two distinct mechanisms: release from intracellular stores via ryanodine receptors and Ca2+ influx across the plasma membrane, due to activation of an unknown receptor. In isolated rat NGNs, we used single-cell microfluorimetry to measure changes in intracellular Ca2+ and to test whether TRPV1 receptors underlie the Ca2+ influx pathway. Caffeine (10 mM) evoked CICTs in all NGNs tested (n = 47) averaging 365 +/- 32 nM. CICTs were partially dependent upon a Ca2+ influx pathway that ranged between 33\% and 98\% of the total Ca2+ transient. Application of two selective TRPV1 antagonists significantly attenuated CICTs. The peak average amplitudes of CICTs in Ca2+-free Locke solution and Ca2+-free Locke solution with IRTX or with BCTC were not significantly different from one another (n = 5 and 7, respectively). These observations suggest that caffeine can induce Ca2+ influx by activating TRPV1 channels.
This article was published in Mol Cell Biochem and referenced in Journal of Civil & Legal Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version