alexa The immune and stress responses of Atlantic cod to long-term increases in water temperature.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): PrezCasanova JC, Rise ML, Dixon B, Afonso LO, Hall JR,

Abstract Share this page

Abstract Sea-caged cod are limited in their movements in the water column, and thus can be exposed to large seasonal ( approximately 0-20 degrees C) temperature fluctuations. To investigate the physiological response of Atlantic cod to summer-like increases in temperature, we exposed 10 degrees C acclimated juvenile cod to a graded thermal challenge (1 degrees C increase every 5 days) and measured: (1) plasma cortisol and glucose levels; (2) the respiratory burst activity of blood leukocytes; and (3) the expression of specific immune-related genes [MHC Class I, Interleukin-1beta (IL-1beta), beta2-microglobulin (beta2-M), Immunoglobulin M (IgM)-light (L) and -heavy (H) chains] in the blood using quantitative reverse transcription-polymerase chain reaction (QRT-PCR). The experiment was stopped at 19.1 degrees C, with 26.7\% of the fish surviving to this point. Plasma glucose levels increased slightly at 16 and 18 degrees C (by 1.39- and 1.74-fold, respectively), in contrast, cortisol levels were elevated significantly (by 2.9-fold) at 16 degrees C but returned to control levels thereafter. The effect of increasing temperature on the expression of immune related genes in blood cells (leukocytes) was variable and depended on the gene of interest. The expression of IgM-H remained stable for the duration of the experiment. In contrast, IL-1beta expression was increased significantly (by approximately 25-fold) at 19 degrees C as compared to time-matched control fish, and changes in the expression of beta2-M, MHC Class I and IgM-L followed a pattern similar to that seen for cortisol: increasing at 16 degrees C (by 4.2-, 5.3- and 17-fold, respectively), but returning to pre-stress levels by 19 degrees C. Interestingly, increasing temperatures had no effect on respiratory burst activity. This study is the first to examine the effects of a chronic regimen of increasing temperature on the stress physiology and immunology of a marine teleost, and suggests that immune function is influenced by complex interactions between thermal effects and temperature-induced stress (elevated circulating cortisol levels). This article was published in Fish Shellfish Immunol and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords