alexa The impact of uncertainties associated with MammoSite brachytherapy on the dose distribution in the breast.
Engineering

Engineering

Journal of Electrical & Electronic Systems

Author(s): Bensaleh S, Bezak E, Bensaleh S, Bezak E

Abstract Share this page

Abstract The MammoSite radiation therapy system is a novel technique for treatment of patients with early-stage breast cancer. It was developed to overcome the longer schedules associated with external-beam radiation therapy. It consists of a small balloon (4 cm in diameter) connected to an inflation channel and a catheter for the passage of a high dose rate 192Ir brachytherapy source. The device is placed into the tumor resection cavity and inflated with a mixture of saline and radiographic contrast agent to a size that fills the cavity. A high dose rate 192Ir source is driven into the balloon center using a remote afterloader to deliver the prescribed dose at a point 1 cm away from the balloon surface. There are several uncertainties that affect the dose distribution in the MammoSite brachytherapy. They include source position deviation, balloon deformation, and the concentration of the contrast medium inside the balloon. The purpose of this study is to investigate the extent of the dose perturbation for various concentrations of the contrast medium in a MammoSite balloon using Monte Carlo simulations and thermoluminescent dosimetry. This study also combines the impact of these uncertainties on the MammoSite treatment efficacy. The current study demonstrates that the combined uncertainties associated with the MammoSite brachytherapy technique--up to the value of 2 mm balloon deformation, 1 mm source deviation, and 15\% contrast concentration--have no impact on the tumor control probability.
This article was published in J Appl Clin Med Phys and referenced in Journal of Electrical & Electronic Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version