alexa The improved Allium Vicia root tip micronucleus assay for clastogenicity of environmental pollutants.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Ma TH, Xu Z, Xu C, McConnell H, Rabago EV,

Abstract Share this page

Abstract The meristematic mitotic cells of plant roots are appropriate and efficient cytogenetic materials for the detection of clastogenicity of environmental pollutants, especially for in situ monitoring of water contaminants. Among several cytological endpoints in these fast dividing cells, such as chromosome/chromatid aberrations, sister-chromatid exchanges and micronuclei, the most effective and simplest indicator of cytological damage is micronucleus formation. Although the Allium cepa and Vicia faba root meristem micronucleus assays (Allium/Vicia root MCN) have been used in clastogenicity studies about 12 times by various authors in the last 25 years, there is no report on the comparison of the efficiency of these two plant systems and in different cell populations (meristem and F1) of the root tip as well as under adequate recovery duration. In order to maximize the efficiency of these bioassays, the current study was designed to compare the Allium and the Vicia root MCN assays on the basis of chromosome length, peak sensitivity of the mitotic cells, and the regions of the root tip where the MCN are formed. The total length of the 2n complement of Allium chromosomes is 14.4 microns and the total length of the 2n complement of Vicia is 9.32 microns. The peak sensitivity determined by serial fixation at 12-h intervals after 100 R of X-irradiation is 44 h. The slope of the X-ray dose-response curve of Allium roots derived from the meristematic regions was lower than that derived from cells in the F1 region. Higher efficiency was also demonstrated when the MCN frequencies were scored from the F1 cells in both Allium and Vicia treated with formaldehyde (FA), mitomycin C (MMC), and maleic hydrazide (MH). The results indicated that scoring of MCN frequencies from the F1 cell region of the root tip was more efficient than scoring from the meristematic region. The X-ray linear regression dose-response curves were established in both Allium and Vicia cell systems and the coefficients of correlations, slope values were used to verify the reliability and efficiency of these two plant cell systems. Based on the dose-response slope value of 0.894 for Allium and 0.643 for Vicia, the Allium root MCN was a more efficient test system. The greater sensitivity of the Allium roots is probably due to the greater total length of the diploid complement and the higher number of metacentric chromosomes.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in Mutat Res and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords