alexa The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis.
Pharmaceutical Sciences

Pharmaceutical Sciences

Advances in Pharmacoepidemiology and Drug Safety

Author(s): Interleukin Receptor Mend, Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JE,

Abstract Share this page

Abstract BACKGROUND: A high circulating concentration of interleukin 6 is associated with increased risk of coronary heart disease. Blockade of the interleukin-6 receptor (IL6R) with a monoclonal antibody (tocilizumab) licensed for treatment of rheumatoid arthritis reduces systemic and articular inflammation. However, whether IL6R blockade also reduces risk of coronary heart disease is unknown. METHODS: Applying the mendelian randomisation principle, we used single nucleotide polymorphisms (SNPs) in the gene IL6R to evaluate the likely efficacy and safety of IL6R inhibition for primary prevention of coronary heart disease. We compared genetic findings with the effects of tocilizumab reported in randomised trials in patients with rheumatoid arthritis. FINDINGS: In 40 studies including up to 133,449 individuals, an IL6R SNP (rs7529229) marking a non-synonymous IL6R variant (rs8192284; p.Asp358Ala) was associated with increased circulating log interleukin-6 concentration (increase per allele 9·45\%, 95\% CI 8·34-10·57) as well as reduced C-reactive protein (decrease per allele 8·35\%, 95\% CI 7·31-9·38) and fibrinogen concentrations (decrease per allele 0·85\%, 95\% CI 0·60-1·10). This pattern of effects was consistent with IL6R blockade from infusions of tocilizumab (4-8 mg/kg every 4 weeks) in patients with rheumatoid arthritis studied in randomised trials. In 25,458 coronary heart disease cases and 100,740 controls, the IL6R rs7529229 SNP was associated with a decreased odds of coronary heart disease events (per allele odds ratio 0·95, 95\% CI 0·93-0·97, p=1·53×10(-5)). INTERPRETATION: On the basis of genetic evidence in human beings, IL6R signalling seems to have a causal role in development of coronary heart disease. IL6R blockade could provide a novel therapeutic approach to prevention of coronary heart disease that warrants testing in suitably powered randomised trials. Genetic studies in populations could be used more widely to help to validate and prioritise novel drug targets or to repurpose existing agents and targets for new therapeutic uses. FUNDING: UK Medical Research Council; British Heart Foundation; Rosetrees Trust; US National Heart, Lung, and Blood Institute; Du Pont Pharma; Chest, Heart and Stroke Scotland; Wellcome Trust; Coronary Thrombosis Trust; Northwick Park Institute for Medical Research; UCLH/UCL Comprehensive Medical Research Centre; US National Institute on Aging; Academy of Finland; Netherlands Organisation for Health Research and Development; SANCO; Dutch Ministry of Public Health, Welfare and Sports; World Cancer Research Fund; Agentschap NL; European Commission; Swedish Heart-Lung Foundation; Swedish Research Council; Strategic Cardiovascular Programme of the Karolinska Institutet; Stockholm County Council; US National Institute of Neurological Disorders and Stroke; MedStar Health Research Institute; GlaxoSmithKline; Dutch Kidney Foundation; US National Institutes of Health; Netherlands Interuniversity Cardiology Institute of the Netherlands; Diabetes UK; European Union Seventh Framework Programme; National Institute for Healthy Ageing; Cancer Research UK; MacArthur Foundation. TRIAL REGISTRATION: ClinicalTrials.gov NCT00000611. Copyright © 2012 Elsevier Ltd. All rights reserved.
This article was published in Lancet and referenced in Advances in Pharmacoepidemiology and Drug Safety

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords