alexa The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ,

Abstract Share this page

Abstract Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection. (c) 2010 Elsevier Inc. All rights reserved.
This article was published in Cell and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords