alexa The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Weir EK, Archer SL

Abstract Share this page

Abstract Hypoxia causes constriction in small pulmonary arteries and dilatation in systemic arteries. Hypoxic pulmonary vasoconstriction (HPV) is an important mechanism by which pulmonary blood flow is controlled in the fetus and by which local lung perfusion is matched to ventilation in the adult. HPV reduces the flow of desaturated blood through underventilated areas of lung. Even though many vasoactive substances have been examined as possible mediators of HPV, these appear more likely to be modulators than mediators. Hypoxic contraction has been demonstrated in single pulmonary vascular smooth muscle cells (PVSMC). The ability to sense changes in oxygen tension is observed in PVSMC and type 1 cells of the carotid body. In both cells, hypoxia has been shown to inhibit an outward potassium current, thus causing membrane depolarization and calcium entry through the voltage-dependent calcium channels. In both cells there is evidence to suggest that changes in the redox status of the oxygen-sensitive potassium channel or channels may control current flow, so that the channel is open when oxidized and closed when reduced. The redox status may be determined by the effects of hypoxia on mitochondrial/peroxisomal function or on the activity of an oxidase similar to NAD(P)H oxidase. More studies are needed to precisely define the individual potassium channels responsive to hypoxia and to confirm the gating mechanism. In systemic arteries hypoxia causes an increased current through ATP-dependent potassium channels and vasodilatation, whereas in the pulmonary arteries hypoxia inhibits potassium current and causes vasoconstriction.
This article was published in FASEB J and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords