alexa The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.

Journal of Bioengineering and Bioelectronics

Author(s): Glasnov TN, Kappe CO

Abstract Share this page

Abstract The popularity of dedicated microwave reactors in many academic and industrial laboratories has produced a plethora of synthetic protocols that are based on this enabling technology. In the majority of examples, transformations that require several hours when performed using conventional heating under reflux conditions reach completion in a few minutes or even seconds in sealed-vessel, autoclave-type, microwave reactors. However, one severe drawback of microwave chemistry is the difficulty in scaling this technology to a production-scale level. This Concept article demonstrates that this limitation can be overcome by translating batch microwave chemistry to scalable continuous-flow processes. For this purpose, conventionally heated micro- or mesofluidic flow devices fitted with a back-pressure regulator are employed, in which the high temperatures and pressures attainable in a sealed-vessel microwave chemistry batch experiment can be mimicked. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Chemistry and referenced in Journal of Bioengineering and Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords