alexa The mineral composition and enamel ultrastructure of hypocalcified amelogenesis imperfecta.



Author(s): Wright JT, Duggal MS, Robinson C, Kirkham J, Shore R

Abstract Share this page

Abstract Hypocalcified amelogenesis imperfecta is characterized clinically by a yellow-brown colored enamel that is prone to severe attrition, often leading to rapid destruction of the crown. While the enamel is thought to be poorly mineralized few studies have evaluated the mineral content, or the histological or microradiographic features of this specific AI type. The purpose of this investigation was to examine teeth affected with autosomal dominant hypocalcified AI histologically using light microscopy (LM), scanning electron microscopy (SEM), and to evaluate the degree of enamel mineralization chemically and with microradiography. Four AI teeth were obtained from an affected individual for comparison with age-matched teeth from normal healthy individuals. Thin sections approximately 100 microns were cut with a diamond disc for examination by LM and microradiography. Using SEM, fractured enamel samples were examined either untreated or after removal of organic material using NaOCl or urea. Normal and AI enamel particles were dissected from thin sections to evaluate the mineral per volume and carbonate content. The enamel was not uniformly affected in all areas of the teeth with the lingual surfaces of the mandibular central incisors appearing clinically and histologically normal. The affected enamel was porous and appeared opaque with LM. Both SEM and LM showed the enamel to be prismatic with relatively normal prism morphology. However, the enamel crystallites were rough and granular compared with those of normal enamel. Extraction to remove organic material did not change the appearance of the crystallites indicating their granular appearance was due to mineral and not residual organic material such as enamel protein. Microradiography showed the enamel was less radiodense and therefore poorly mineralized compared with normal enamel. This was confirmed by chemical determination of the mineral per volume, which showed some areas of the AI enamel had as much as 30\% less mineral compared with normal enamel. The carbonate content was found to be similar in AI and normal enamel. Hypocalcified AI is associated with decreased mineralization as well as ultrastructural defects in the crystallite structure. The combined histological and biochemical features of hypocalcified AI seen in this investigation indicate that this AI type is distinctly different from the hypoplastic and hypomaturation AI types.
This article was published in J Craniofac Genet Dev Biol and referenced in Dentistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version