alexa The model Ah-receptor agonist beta-naphthoflavone inhibits aflatoxin B1-DNA binding in vivo in rainbow trout at dietary levels that do not induce CYP1A enzymes.
Immunology

Immunology

Immunome Research

Author(s): Takahashi N, Harttig U, Williams DE, Bailey GS

Abstract Share this page

beta-Naphthoflavone (BNF), a well-known Ah-receptor agonist, has been believed to inhibit aflatoxin B1 (AFB1) carcinogenesis in rats and rainbow trout primarily through induction of the cytochrome P450 1A (CYP1A) enzyme subfamily and consequent diversion of AFB1 to the less carcinogenic phase I metabolite aflatoxin M1 (AFM1). This study investigates the dose responsive effects of dietary BNF treatment on CYP1A induction. AFM1 formation, AFB1-8,9-epoxide formation and AFB1-DNA binding in the trout model. Pre-feeding diet containing 10-200 p.p.m. BNF after AFB1 i.p. injection provided dose-dependent induction of CYP1A-dependent ethoxyresorufin-O-deethylase (EROD) activity and inhibition of in vivo AFB1-DNA binding. However, most of the observable inhibition of DNA adduction (45% inhibition) had occurred at 10 p.p.m. BNF without detectable EROD induction; higher doses of BNF up to 200 p.p.m. induced EROD > 6-fold but provided only another 15% inhibition of DNA adduction in vivo. When in vitro AFB1-DNA binding was assessed using liver microsomes from trout fed 10-100 p.p.m. BNF, induced microsomal EROD activity correlated moderately with reduction of in vitro AFB1-DNA binding activity. However, BNF treatment in a low dose range (0.2-10 p.p.m.) also strongly inhibited in vivo hepatic AFB1-DNA binding (69% inhibition at 5 p.p.m. BNF in this experiment), in a dose-dependent manner, in the complete absence of detectable EROD induction. The microsomes from 5 p.p.m. BNF-treated trout had no more EROD activity than control microsomes, and no less capacity for catalyzing AFB1-DNA binding in vitro than control microsomes. Thus, the potent inhibition of hepatic AFB1-DNA binding in vivo by 5 p.p.m. BNF was a result of neither CYP1A enzyme induction nor irreversibly reduced catalytic capacity for AFB1-8,9-epoxide formation. Direct analysis of AFB1 metabolites formed in vitro by liver microsomes from trout fed 10, 100 and 500 p.p.m. BNF showed that low dietary BNF (10 p.p.m.) neither induced microsomal CYP1A-mediated AFM1 formation nor altered AFB1-8,9-epoxide formation compared to the control. By comparison, 100 and 500 p.p.m. BNF pretreatment significantly elevated microsome-catalyzed AFM1 formation in vitro (P < 0.001), and this increase was highly correlated with increased EROD activity (r2 = 0.999, P < 0.001). Upon in vitro addition, BNF was found to be a potent inhibitor of microsome-mediated AFB1-8,9-exo-epoxide formation (IC50 = 2.6 +/- 0.1 microM) and AFB1-DNA binding (inhibition constant Ki = 3.03 +/- 0.25 microM). These findings indicate that CYP1A enzyme induction can contribute modestly to BNF protection against AFB1 in this species both in vivo and in vitro at higher BNF doses, but does not do so at lower doses. Instead, enzyme inhibition by BNF against AFB1 8,9-epoxidation appears to be the predominant protective mechanism at higher BNF doses, and the sole protective mechanism at low doses, in the rainbow trout. These findings demonstrate that mechanisms of chemoprevention can change with anticarcinogen dose, and caution that even potent induction of phase I or phase II activities does not assure that pathway to be a predominant protective mechanism in vivo.

This article was published in Carcinogenesis. and referenced in Immunome Research

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords