alexa The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium.
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C,

Abstract Share this page

Abstract G. Y. Oudit, Z. Kassiri, R. Sah, R. J. Ramirez, C. Zobel and P. H. Backx. The Molecular Physiology of the Cardiac Transient Outward Potassium Current (I(to)) in Normal and Diseased Myocardium. Journal of Molecular and Cellular Cardiology (2001) 33, 851-872. The Ca(2+)-independent transient outward potassium current (I(to)) plays an important role in early repolarization of the cardiac action potential. I(to)has been clearly demonstrated in myocytes from different cardiac regions and species. Two kinetic variants of cardiac I(to)have been identified: fast I(to), called I(to,f), and slow I(to), called I(to,s). Recent findings suggest that I(to,f)is formed by assembly of K(v4.2)and/or K(v4.3)alpha pore-forming voltage-gated subunits while I(to,s)is comprised of K(v1.4)and possibly K(v1.7)subunits. In addition, several regulatory subunits and pathways modulating the level and biophysical properties of cardiac I(to)have been identified. Experimental findings and data from computer modeling of cardiac action potentials have conclusively established an important physiological role of I(to)in rodents, with its role in large mammals being less well defined due to complex interplay between a multitude of cardiac ionic currents. A central and consistent electrophysiological change in cardiac disease is the reduction in I(to)density with a loss of heterogeneity of I(to)expression and associated action potential prolongation. Alterations of I(to)in rodent cardiac disease have been linked to repolarization abnormalities and alterations in intracellular Ca(2+)homeostasis, while in larger mammals the link with functional changes is far less certain. We review the current literature on the molecular basis for cardiac I(to)and the functional consequences of changes in I(to)that occur in cardiovascular disease. Copyright 2001 Academic Press. This article was published in J Mol Cell Cardiol and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords