alexa The mycotoxin Zearalenone induces apoptosis in human hepatocytes (HepG2) via p53-dependent mitochondrial signaling pathway.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): AyedBoussema I, Bouaziz C, Rjiba K, Valenti K, Laporte F,

Abstract Share this page

Abstract Zearalenone (Zen) is a fusarial mycotoxin commonly found in several food commodities worldwide. It is frequently implicated in reproductive disorders and exerts several genotoxic effects in vivo and in vitro. In response to DNA damage, cells may undergo an intricate network of different pathways including apoptosis. Meanwhile, data regarding the induction of apoptosis after Zen exposure are limited. Thus, the aim of this study was to demonstrate whether Zen-induced DNA damage can lead to apoptosis as a stress response and which pathways are undertaken. Our results clearly show that Zen reduces cell proliferation in HepG2 cells in a dose-dependent manner as attested by the MTT assay (IC50\%, 100microM). The analysis of propidum iodide uptake has shown that the amount of necrotic cells was about 6\% among 55\% of dead cells (at 120microM of Zen). The involvement of apoptosis as a major cause of Zen-induced cell death was further confirmed but results of caspase-3 activity showed a Zen-dose dependant increase. Furthermore, results of microarrays analysis have shown that Zen induced an upregulation of ATM and p53 genes family. ATM pathway responds primarily to DNA double-strand breaks and has been involved in the activation and stabilization of p53. The activation of p53 was accompanied by an upregulation of GADD45 to arrest the cell cycle and to allow the repair mechanisms to take place. In addition, results of genes profiling as well as western-blotting analysis showed that Zen increased the ratio of pro-apoptotic factors/anti-apoptotic factors which led to the loss of mitochondrial potential, Bax translocation and cytochrome c release. Once released, cytochome c activates caspase 9 which in turn activates caspase-3 and enhances apoptosis. In summary, these data suggested that Zen induced apoptosis in a dose-dependent manner in HepG2 cells via a p53-dependent mitochondrial pathway. This article was published in Toxicol In Vitro and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords