alexa The N-acylation-phosphodiesterase pathway and cell signalling.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Schmid HH, Schmid PC, Natarajan V

Abstract Share this page

Abstract Long-chain N-acylethanolamines (NAEs) elicit a variety of biological and pharmacological effects. Anandamide (20:4n-6 NAE) and other polyunsaturated NAEs bind to the cannabinoid receptor and may thus serve as highly specific lipid mediators of cell signalling. NAEs can be formed by phospholipase D-catalyzed hydrolysis of N-acylethanolamine phospholipids or by direct condensation of ethanolamine and fatty acid. So far, most of the latter biosynthetic activity has been shown to be the reverse reaction of the NAE amidohydrolase that catalyzes NAE degradation. Thus, increasing evidence supports the hypothesis that the N-acylation-phosphodiesterase pathway yields not only saturated-monounsaturated NAEs, but polyunsaturated ones, including anandamide, as well.
This article was published in Chem Phys Lipids and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version