alexa The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Teodoro JS, Rolo AP, Palmeira CM

Abstract Share this page

Abstract The reductive power provided by nicotinamide adenine dinucleotides is invaluable for several cellular processes. It drives metabolic reactions, enzymatic activity, regulates genetic expression and allows for the maintenance of a normal cell redox status. Therefore, the balance between the oxidized (NAD(+)) and the reduced (NADH) forms is critical for the cell's proper function and ultimately, for its survival. Being intimately associated with the cells' metabolism, it is expected that alterations to the NAD(+)/NADH ratio are to be found in situations of metabolic diseases, as is the case of diabetes. NAD(+) is a necessary cofactor for several enzymes' activity, many of which are related to metabolism. Therefore, a decrease in the NAD(+)/NADH ratio causes these enzymes to decrease in activity (reductive stress), resulting in an altered metabolic situation that might be the first insult toward several pathologies, such as diabetes. Here, we review the importance of nicotinamide adenine dinucleotides in the liver cell and its fluctuations in a state of type 2 diabetes mellitus. This article was published in Toxicol Mech Methods and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords