alexa The n-octanol and n-hexane water partition coefficient of environmentally relevant chemicals predicted from the mobile order and disorder (MOD) thermodynamics.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Ruelle P

Abstract Share this page

The quantitative thermodynamic development of the mobile order and disorder theory in H-bonded liquids is extended in order to predict the partition coefficient. With respect to the classical predictive methods, the great advantage of the present approach resides in the possibility of predicting partition coefficient not only in the reference n-octanol/water partitioning system, but also in any mutually saturated two-phase system made up of two largely immiscible solvents. Constructed from the various free energy contributions encoded in the distribution process, the model furthermore provides a useful tool to understand both the origin and the factors, like the solute molar volume, that determine the partitioning of non-electrolytes between two immiscible liquid phases. From the comparison of the relative magnitude of the terms which contribute to the overall log P value, much information can also be gained concerning the variation of the partition coefficients of the same substances in different distribution systems. For example, the model has successfully been applied to the log P prediction of a number of environmentally important chemicals of varying structure, size and chemical nature in the n-octanol/water and n-hexane/water systems. Whatever the complexing or non-complexing substances studied, the hydrophobic effect always represent the driving force that rules distribution processes in the aqueous environments. As the dominant contribution to the partition coefficient in any organic/aqueous binary system, it is evidenced why hydrophobicity is usually considered to be a good measure of lipophilicity.

  • To read the full article Visit
  • Subscription
This article was published in Chemosphere. and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords