alexa The optimal height of the synaptic cleft.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Savtchenko LP, Rusakov DA

Abstract Share this page

Abstract Signal integration in the brain is determined by the size and kinetics of rapid synaptic responses. The latter, in turn, depends on the concentration profile of neurotransmitter in the synaptic cleft. According to a traditional view, narrower clefts should correspond to higher intracleft concentrations of neurotransmitter, and therefore to the enhanced activation of synaptic receptors. Here, we argue that narrowing the cleft also increases electrical resistance of the intracleft medium and therefore reduces local receptor currents. We employ detailed theoretical analyses and Monte Carlo simulations to propose that these two contrasting phenomena result in a relatively narrow range of cleft heights at which the synaptic receptor current reaches its maximum. Over a physiological range of synaptic parameters, the "optimum" height falls between approximately 12 and 20 nm. This range is consistent with the structure of central synapses reported by electron microscopy. Therefore, our results suggest that a simple fundamental principle may underlie the synaptic cleft architecture: to maximize synaptic strength.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version