alexa The optimal number of major histocompatibility complex molecules in an individual.
Immunology

Immunology

Immunogenetics: Open Access

Author(s): Nowak MA, TarczyHornoch K, Austyn JM

Abstract Share this page

Abstract A straightforward argument is presented to calculate the number of different major histocompatibility complex (MHC) molecules in an individual that maximizes the probability of mounting immune responses against a large number of foreign peptides. It is assumed that increasing the number of MHC molecules per individual, n, has three different effects: (i) it increases the number of foreign peptides that can be presented; (ii) it increases the number of different T-cell receptors (TCRs) positively selected in the thymus; but (iii) it reduces the number of TCRs by negative selection. The mathematical analysis shows that n = 1/f maximizes the number of different TCRs that pass through positive and negative selection and that n = 2/f maximizes the probability to mount immune responses against a large fraction of foreign peptides. Here f is the fraction of TCRs deleted by one MHC molecule. Both results depend on approximations that are discussed in the paper. The model presented has implications for our understanding of the evolutionary forces acting on the MHC.
This article was published in Proc Natl Acad Sci U S A and referenced in Immunogenetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords