alexa The pathophysiology of acute graft-versus-host disease.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Ferrara JL, Cooke KR, Teshima T

Abstract Share this page

Abstract The pathophysiology of acute graft-versus-host disease (GVHD) is a complex process that can be conceptualized in three phases. In the first phase, high-dose chemoradiotherapy causes damage to host tissues, including a self-limited burst of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interleukin 1. These cytokines activate host antigen-presenting cells (APCs). In the second phase, donor T-cells recognize alloantigens on host APCs. These activated T-cells then proliferate, differentiate into effector cells, and secrete cytokines, particularly interferon (IFN)-gamma. In the third phase, target cells undergo apoptosis mediated by cellular effectors (eg, donor cytotoxic T-lymphocytes) and inflammatory cytokines such as TNF-alpha. TNF-alpha secretion is amplified by stimuli such as endotoxin that leaks across damaged gastrointestinal mucosa injured by the chemoradiotherapy in the first phase. TNF-alpha and IFN-gamma cause further injury to gastrointestinal epithelium, causing more endotoxin leakage and establishing a positive inflammatory feedback loop. These events are examined in detail in the following review.
This article was published in Int J Hematol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version