alexa The PDL1-PD1 axis converts human TH1 cells into regulatory T cells.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Amarnath S, Mangus CW, Wang JC, Wei F, He A,

Abstract Share this page

Abstract Immune surveillance by T helper type 1 (T(H)1) cells is not only critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GVHD) after transplantation. The inhibitory molecule programmed death ligand 1 (PDL1) has been shown to anergize human T(H)1 cells, but other mechanisms of PDL1-mediated T(H)1 inhibition such as the conversion of T(H)1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause T(H)1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET(+) T(H)1 cells into FOXP3(+) regulatory T (T(reg)) cells in vivo, thereby preventing human-into-mouse xenogeneic GVHD (xGVHD). Either blocking PD1 expression on T(H)1 cells by small interfering RNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized T(H)1 cell differentiation during PDL1 challenge and restored the capacity of T(H)1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human T(H)1 cells to manifest in vivo plasticity, resulting in a T(reg) phenotype that severely impairs cell-mediated immunity. Converting human T(H)1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GVHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection.
This article was published in Sci Transl Med and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords