alexa The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
Environmental Sciences

Environmental Sciences

International Journal of Waste Resources

Author(s): Chi Y, Yan N, Qu Z, Qiao S, Jia J

Abstract Share this page

Abstract In order to facilitate the removal of elemental mercury (Hg(0)) in flue gas, iodine was used as the oxidant to convert Hg(0) to the oxidized or particulate-bound form. The removal of Hg(0) by the homogenous gas phase reaction and the heterogeneous particle-involved reactions was investigated under various conditions, and a method to test the particle-involved reaction kinetics was developed. Iodine was found to be efficient in Hg(0) oxidation, with a 2nd-order rate constant of about 7.4(+/-0.2)x10(-17)cm(3)molecules(-1)s(-1) at 393 K. Nitric oxide showed significant inhibition in the homogenous gas reaction of Hg(0) oxidation. The oxidation of Hg(0) with iodine can be greatly accelerated in the presence of fly-ash or powder activated carbon. SO(2) slightly reduced Hg(0) removal efficiency in the particle-involved reaction. It was estimated that Hg(0) removal efficiency was as high as 70\% by adding 0.3 ppmv iodine into the flue gas with 20 g/m(3) of fly-ash. In addition, the predicted removal efficiency of Hg(0) was as high as 90\% if 10mg/m(3) of activated carbon and 0.3 ppmv iodine were injected into the flue gas with fly-ash. The results suggest that the combination of iodine with fly-ash and/or activated carbon can efficiently enhance the removal of Hg(0) in coal-fired flue gas. This article was published in J Hazard Mater and referenced in International Journal of Waste Resources

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords