alexa The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.


Journal of Plant Pathology & Microbiology

Author(s): Alvarez F, Castro M, Prncipe A, Borioli G, Fischer S,

Abstract Share this page

Abstract AIMS: This work was conducted to identify the antifungal compounds produced by two previously isolated Bacillus sp. strains: ARP(2) 3 and MEP(2) 18. Both strains were subjected to further analysis to determine their taxonomic position and to identify the compounds responsible for their antifungal activity as well as to evaluate the efficiency of these strains to control sclerotinia stem rot in soybean. METHODS AND RESULTS: The antifungal compounds were isolated by acid precipitation of cell-free supernatants, purified by RP-HPLC and then tested for antagonistic activity against Sclerotinia sclerotiorum. Mass spectra from RP-HPLC eluted fractions showed the presence of surfactin C(15) , fengycins A (C(16) -C(17)) and B (C(16)) isoforms in supernatants from strain ARP(2) 3 cultures, whereas the major lipopeptide produced by strain MEP(2) 18 was iturin A C(15) . Alterations in mycelial morphology and sclerotial germination were observed in the presence of lipopeptides-containing supernatants from Bacillus strains cultures. Foliar application of Bacillus amyloliquefaciens strains on soybean plants prior to S. sclerotiorum infection resulted in significant protection against sclerotinia stem rot compared with noninoculated plants or plants inoculated with a nonlipopeptide-producing B. subtilis strain. CONCLUSIONS: Both strains, renamed as B. amyloliquefaciens ARP(2) 3 and MEP(2) 18, were able to produce antifungal compounds belonging to the cyclic lipopeptide family. Our data suggest that the foliar application of lipopeptide-producing B. amyloliquefaciens strains could be a promising strategy for the management of sclerotinia stem rot in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY: Sclerotinia stem rot was ranked as one of the most severe soybean disease in Argentina and worldwide. The results of this study showed the potential of B. amyloliquefaciens strains ARP(2) 3 and MEP(2) 18 to control plant diseases caused by S. sclerotiorum. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. This article was published in J Appl Microbiol and referenced in Journal of Plant Pathology & Microbiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version