alexa The protective role of cellular glutathione peroxidase against trauma-induced mitochondrial dysfunction in the mouse brain.


Journal of Addiction Research & Therapy

Author(s): Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS

Abstract Share this page

Abstract Reactive oxygen species are believed to participate in the pathogenesis of traumatic brain injury (TBI). To evaluate the role of cellular glutathione peroxidase (Gpx1), a selenium-containing enzyme functioning in reduction of hydrogen peroxide and alkyl hyperoxides, in protecting animals against TBI, a line of Gpx1 transgenic mice was generated. Overexpression of Gpx1 was found in many organs including the brain of the transgenic mice. This line of transgenic mice and knockout mice deficient in Gpx1 were used in a model of controlled cortical impact injury and the efficiency of oxidative phosphorylation in brain mitochondria was determined. Although a 2-mm depth of mechanical impact caused a drastic decrease in NAD-linked electron transfer activities and energy-coupling capacities in brain mitochondria of nontransgenic mice, the decrease in mitochondrial function was completely prevented by overexpression of Gpx1 in Gpx1 transgenic mice. In addition, a 1-mm deformation depth hardly affected brain mitochondrial function in wild-type (Gpx1+/+) mice, yet resulted in a significant decrease in mitochondrial bioenergetic capacity in brains of homozygous Gpx1 knockout (Gpx1-/-) mice. Further experiments showed that inclusion of calcium chelator egtazic acid in measurement of mitochondrial respiration could completely restore the efficiency of mitochondrial respiration in injured brains of nontransgenic mice and Gpx1-/- mice, suggesting that the observed mitochondrial dysfunction is a direct result of increase in mitochondrion-associated calcium, which is secondary to the increased oxidative stress. These studies not only establish the role of Gpx1 in preventing mitochondrial dysfunction in mouse brain after TBI, but also suggest the species of reactive oxygen responsible for this event. This article was published in J Stroke Cerebrovasc Dis and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version